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General Problem

▶ Map resources into welfare through policies (e.g. transfers to foster development).

→ Pr1: Evaluate a given policy’s effects (e.g. effects on profits).

→ Pr2: Decide who to treat in the full population (e.g. Indian entrepreneurs).

▶ Decide who to treat:

→ Easy if the policy’s effects are constant.

→ Hard if heterogeneous.
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Problem Description

▶ Policies’ effects vary between individuals.

→ The same policy can help some and harm others.
e.g. Alt, Lassen, and Marshall (2016), Hussam, Rigol, and Roth (2022), Biroli et al. (2025), Brynjolfsson, Li, and Raymond (2025).

▶ Policymakers test policies before implementing them at scale.

→ Treat only those expected to benefit.

▶ Econometric approach: Policy Learning.

→ Use RCTs to learn assignment rules that perform well in the population.
e.g. Kitagawa and Tetenov (2018), Mbakop and Tabord-Meehan (2021), Athey and Wager (2021).

▶ State of the art: all relevant dimensions are observed.

→ When and how to account for unobserved heterogeneity in policy learning?
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Stylized Example - Setting Hussam, Rigol, and Roth, 2022 (AER)

▶ Binary Policy: Di ∈ {0, 1} (e.g. cash transfer to micro-entrepreneurs).

▶ Random Sample S from a population of interest P (e.g. Indian entrepreneurs).

▶ RCT to evaluate the effects on Yi (e.g. profits).

▶ For simplicity, Xi ∈ {h, l}: τ(l) < 0 < τ(h) (e.g. high/low education).

→ Who to treat in P? Covariate-Based Policy Rule: Gx = 1(Xi = h).

▶ Assume now observed, and unobserved heterogeneity: τ(Xi ,Ai ).

▶ For simplicity, Ai ∈ R (e.g. business skills).

▶ Denote with τ(h), τ(l) the avg. effect for X = h, l : τ(l) < 0 < τ(h).

→ Is Gx still optimal?
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Stylized Example - Individual Treatment Effects
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Stylized Example - Covariate-Based Policy Rule
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Stylized Example - Oracle Policy Rule
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Research Question

▶ Problem 1: we only observe S, and we do not know counterfactuals.

→ Solution: Empirical Welfare Maximization (Kitagawa and Tetenov, 2018).

▶ Problem 2: we don’t observe the realizations of Ai : αi (e.g. business skills).

→ Potential solution: use estimates or proxies: α̂i (e.g. fixed effects, factors,
principal components; satellite data, survey questions, ...).

Can estimated latent characteristics improve policy recommendations when
treatment effects vary along their true values?
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This Paper in One Slide

Can estimated latent characteristics improve policy recommendations when
treatment effects vary along their true values?

▶ It depends: trade-off importance of α vs. estimation error in α̂.

→ Regret bounds on welfare for policy rules that include α̂ or not.

▶ It depends: leverage data to set optimally the importance of α̂.

→ Data-driven alternative that weights α̂’s importance via cross-validation.

→ Adaptively achieves near-optimal welfare.

▶ Empirical application in development economics Hussam et al., 2022 (AER).

→ Including proxies halves the probability of producing welfare losses.

8 / 32



This Paper in One Slide

Can estimated latent characteristics improve policy recommendations when
treatment effects vary along their true values?

▶ It depends: trade-off importance of α vs. estimation error in α̂.

→ Regret bounds on welfare for policy rules that include α̂ or not.

▶ It depends: leverage data to set optimally the importance of α̂.

→ Data-driven alternative that weights α̂’s importance via cross-validation.

→ Adaptively achieves near-optimal welfare.

▶ Empirical application in development economics Hussam et al., 2022 (AER).

→ Including proxies halves the probability of producing welfare losses.

8 / 32



This Paper in One Slide

Can estimated latent characteristics improve policy recommendations when
treatment effects vary along their true values?

▶ It depends: trade-off importance of α vs. estimation error in α̂.

→ Regret bounds on welfare for policy rules that include α̂ or not.

▶ It depends: leverage data to set optimally the importance of α̂.

→ Data-driven alternative that weights α̂’s importance via cross-validation.

→ Adaptively achieves near-optimal welfare.

▶ Empirical application in development economics Hussam et al., 2022 (AER).

→ Including proxies halves the probability of producing welfare losses.

8 / 32



Related Literature

▶ Policy Learning.
e.g. Manski (2004), Bhattacharya and Dupas (2012), Kitagawa and Tetenov (2018), Kitagawa and Tetenov (2021), Mbakop and

Tabord-Meehan (2021), Athey and Wager (2021), Viviano and Bradic (2024), Viviano (2024).

→ Unobserved heterogeneity introduces a new approximation-estimation error trade-off.

→ Data-driven procedure can solve this trade-off.

▶ Applied Microeconomics (development, education, political economy, labor).
e.g. Leuven, Oosterbeek, and Klaauw (2010), Alt, Lassen, and Marshall (2016), Hussam, Rigol, and Roth (2022), Bryan, Karlan, and

Osman (2024), Biroli et al. (2025), Brynjolfsson, Li, and Raymond (2025).

→ How to scale up interventions when treatment effects vary between individuals.

→ We can evaluate policy recommendations before recommending them!
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Policy Learning Exercise - Preview of the Results

Does including community ratings as a targeting variable actually increase welfare?

▶ Status Quo: don’t scale up.

▶ Random rule Grand: scale up randomly.

▶ CB threshold rules Gx : age, education.

▶ α̂-CB threshold rules Gx ,α̂: covariates + community rating.

▶ CV-Mixed threshold rules G (λ): select the weight λ of community ratings via
cross-validation.
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Distribution of Welfare - α̂-CB Rules
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Distribution of Welfare - CV-Mixed Rules Noise Increase Table Summary
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Potential Outcomes

Consider:
(Yi (0),Xi ,Ai ) ∼ Py(0),x ,α, Di ∼ B(1, e(Zi ))

that takes values (yi (0), xi , αi ) ∈ Y × X ×A and e(Zi ) = p.

Potential Outcomes:

Yi (0), Yi (1) = Yi (0) + τ(Xi ,Ai )

Observable Data:

(Yi ,Xi ,Di ), Yi = Di · Yi (1) + (1− Di ) · Yi (0)
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Policy Rules and Classes

Policy Rule: A mapping from variables (Z = X or Z = X ×A ) to target set {0, 1}:

Gz : Z → {0, 1}

Classes of rules:

Gx = {Gx : X → {0, 1}︸ ︷︷ ︸
Covariate-Based (CB)

}, Gx ,α = {Gx ,α : X ×A → {0, 1}︸ ︷︷ ︸
α-Augmented (α-CB)

}

Example: Grant Allocation.

▶ Gx : Assign by age and education.

▶ Gx ,α: Also include business skills α.
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Feasible α-Augmented Rules

The realized value of Ai , αi is not observed, but it can be estimated with α̂i .

α̂i = αi + εi , εi ∼ N (0, σ2
ε)

Feasible α-Augmented rules:

Gx ,α̂ = {Gx ,α̂ : X ×A → {0, 1}︸ ︷︷ ︸
α̂-Augmented (α̂-CB)

}

14 / 32



Example: (Linear) Threshold Rules

Threshold rules:

▶ CB rules:
Gx = {Gx = 1(x > t)}

▶ α-CB rules:
Gx ,α = {Gx ,α = 1(x + α > t)}

▶ α̂-CB rules:
Gx ,α̂ = {Gx ,α̂ = 1(x + α̂ > t)}

15 / 32



Welfare and Policy Learning

Welfare generated by a (general) Policy Gz :

W (Gz) :=
1

n

n∑
i=1

[Yi (1) · 1(i ∈ Gz) + Yi (0) · 1(i /∈ Gz)]

Oracle Rule: Find Gz that maximizes expected welfare:

G ∗
z := arg max

Gz∈Gz

EPn [W (Gz)]

Challenge: G ∗
z depends on counterfactuals and solves a population-wide problem.

Need for a feasible empirical analogue.
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Empirical Welfare Maximization (EWM) - Kitagawa and Tetenov (2018)

EWM Rule:
Ĝz := arg max

Gz∈Gz

{Wn(Gz)}

with

Wn(Gz) :=
1

n

n∑
i=1

[
YiDi

e(Zi )
· 1(i ∈ Gz) +

Yi (1− Di )

1− e(Zi )
· 1(i /∈ Gz)

]

Regret:
R(Ĝz) := EPn [W (G ∗

z )−W (Ĝz)]

Measures average welfare loss from using Ĝz instead of G ∗
z .
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Assumption 1 - Kitagawa and Tetenov (2018) (1/2)

i. Bounded Outcomes

|Yi | ≤ M/2

Potential outcomes are uniformly bounded by a constant.

ii. Clean Design (Unconfoundedness + SUTVA)

Di ⊥ (Yi (0),Yi (1))|(Xi ,Ai ) ; Yi (Di ,D−i ) = Yi (Di )

Treatment assignment is as good as random; no spillovers.
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Assumption 1 - Kitagawa and Tetenov (2018) (2/2)

iii. Strict Overlap

Pr(Di = 1|Xi ,Ai ) ∈ [k , 1− k] for some k > 0

All units have a positive chance of receiving treatment.

iv. Finite VC-Dimension

VC(Gz) = vz < ∞

The policy class has finite complexity.
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Assumption 2 - Novel

i. Proxy Representation
α̂i can be written as α̂i = αi + εi , and εi |(Ai ,Xi ) ∼ N (0, σ2

ε|x).

ii. Lipschitz Treatment Effects

|τ(x , α+ γ)− τ(x , α)| ≤ L · |γ|, L ∈ R+

Small changes in α lead to smooth changes in τ .
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Regret Bound for α̂-Augmented Rules

Proposition 1: Under Assumptions 1–2, regret of α̂-Augmented policy rules satisfies:

R(Ĝx ,α̂) := EPn [W (G ∗
x ,α)−W (Ĝx ,α̂)] ≤

2C1
M

k

√
vx ,α̂
n

+ c1σε|x

where C1 is a universal constant and c1 := 3L
√
2/π.

▶ Two terms:

1. 2C1
M

k

√
vx,α̂
n

: regret due to empirical analogue.

2. c1σε|x : bounds estimation error, regret due to noisy estimates of α.
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x ,α)−W (Ĝx ,α̂)] ≤ 2C1

M

k

√
vx ,α̂
n

+

c1σε|x

where C1 is a universal constant and c1 := 3L
√
2/π.

▶ Two terms:

1. 2C1
M

k

√
vx,α̂
n

: regret due to empirical analogue.

2. c1σε|x : bounds estimation error, regret due to noisy estimates of α.

21 / 32



Regret Bound for α̂-Augmented Rules

Proposition 1: Under Assumptions 1–2, regret of α̂-Augmented policy rules satisfies:
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Regret Bound for Covariate-Based Rules

Proposition 2: Under Assumptions 1–2, regret of Covariate-Based policy rules satisfies:

R(Ĝx) := EPn [W (G ∗
x ,α)−W (Ĝx)] ≤

C1
M

k

√
vx
n

+ στ |x

where C1 is a universal constant and στ |x =
√

Var(τ(Xi ,Ai )|Xi = x , i ∈ G ∗
x ,α)

▶ Two terms:

1. C1
M

k

√
vx
n
: regret due to empirical analogue.

2. στ |x : bounds approximation error, regret due to ignoring α.

▶ Key insight: trade-off between estimation (due to noise in α̂) and approximation
(due to importance of α) error.
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Simulations Results - Regret Simulations DGP
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Simulations Results - Regret α̂-CB Rules Simulations DGP Back to Empirics
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Cross-Validated Mixed Rules - Intuition

Mixed (threshold) Rules:

G (λ) = 1(x + λ · α̂ > t(λ)), λ ∈ Λ ⊂ [0, 1]

→ λ = 0: Covariate-Based rule Gx

→ λ = 1: α̂-Augmented rule Gx ,α̂

Idea: Learn the optimal weight to attach to α̂ via cross-validation using the welfare
generated out-of-sample.
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Cross-Validated Mixed Policy Rules - Algorithm

Algorithm Cross-Validated Mixed Rules

Require: Data (Xi , α̂i ,Yi ,Di ) for i = 1, . . . , n +m, grid Λ = {λ1, . . . , λr} ⊂ [0, 1].
1: Randomly split data into training set Strain of size n and validation set Sval of size

m.

2: for each λ ∈ Λ do:
3: Estimate Ĝ (t∗(λ)) on Strain.
4: Estimate empirical welfare W ′

m(G (t∗(λ))) on Sval.
5: end for
6: Estimate λ̂ = argmaxλ∈ΛW

′
m(G (t∗(λ))).

7: return Final policy rule G (λ̂).
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Optimality of CV-Mixed Rules

Proposition 3: Under Assumption 1, the CV-Mixed rule G (λ̂) satisfies:

EPn [W (G (λ̂))] ≥ max{EPn [W (G (0))],EPn [W (G (1))]} − 2εm

with probability at least 1− δ,

εm := M ·

√
1

2m
log

(
2r

δ

)
where M is the upper bound for |Yi |, r = |Λ|, and m = |Sval|.

▶ Key Insight: with high probability, CV-Mixed rules outperform the best between
Covariate-Based and α̂-Augmented rules.
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Simulation Results - Regret CV-Mixed Rules Simulations DGP
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Simulation Results - Regret CV-Mixed Rules Is λ̂ Interpretable? Different στ|x Back to Empirics
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Empirical Application - Setting

Targeting High Ability Entrepreneurs Using Community Information: Mechanism
Design in the Field (Hussam, Rigol, and Roth, 2022 (AER)):

▶ RCT with 1500 Indian microentrepreneurs.

▶ Treatment: cash for business development.

▶ Outcome: profits.

▶ Heterogeneity dimension: community ratings as a proxy for business skills.

Main point of the paper: demonstrate that community knowledge can help target
high-growth microentrepreneurs.
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Policy Learning Exercise

Does including community ratings as a targeting variable actually increase welfare?

▶ Status Quo: don’t scale up.

▶ Random rule Grand: scale up randomly.

▶ CB threshold rules Gx : age, education.

▶ α̂-CB threshold rules Gx ,α̂: covariates + community rating.

▶ CV-Mixed threshold rules G (λ): selects the weight λ of community ratings via
cross-validation.
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Ranking Rules Formal Algorithm Welfare

Randomly split the data into an estimating and testing sample:

Full Data (1321)

Estimating Set (60%, 792) Test Set (40%, 529)

Train (36%, 475) Validation (24%, 317)

Learn Rules Gx , Gx,α̂, G (λ∗) Estimate λ via CV

Estimate test-set welfare

Repeat the random split B = 500 times.
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Distribution of Welfare - Random Rules
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Distribution of Welfare - CB Rules
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Distribution of Welfare - α̂-CB Rules
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Distribution of Welfare - CV-Mixed Rules Noise Increase Table Summary
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Conclusions Future Directions

▶ Main insight: Including estimated latent variables introduces an
approximation-estimation error trade-off.

→ Improves policy recommendations if α’s importance > α̂’s estimation error.

▶ CV-Mixed rules: adaptively set the importance of α̂ via cross-validation.

→ Theoretically and empirically shown to achieve near-optimal welfare.

▶ Empirical application in development economics.

→ Intuitive procedure to rank policy recommendations.

32 / 32



Thanks for your attention!

For any comment: giacomo.opocher2@unibo.it

mailto:giacomo.opocher@studio.unibo.it


Simulation Study - Design Back to Regret Back to CB Back to α̂-CB Back to CV-Mixed Back to Different γ

Data-Generating Process:

▶ Covariates: Xi ∈ R1.

▶ Unobserved characteristic: αi ∼ N(0, σ2
α).

▶ Unobserved characteristic’s estimate: α̂i = αi + N(0, σ2
ε).

▶ Potential outcomes:

Yi (0) = g(Xi ) + Ai + εi , Yi (1) = Yi (0) + τ(Xi ,Ai )

▶ Treatment assignment: Di ∼ Bernoulli(0.5).

Treatment Effect:
τ(x , α) = x + γ · α

Linear in (x , α) with varying γ to control unobserved heterogeneity.
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Simulation Results - Different στ |x Back to CV-Mixed Simulations DGP
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Can we compute the distribution of the performance? Back

Consider different realizations of the sample splitting:

Algorithm Welfare Evaluation

1: for b = 1 to B = 500 do
2: Set random seed to b.
3: Random split: S = Sb

est ∪ Sb
est and Sb

est = Sb
train ∪ Sb

val, Sb
train ∩ Sb

val ∩ Sb
test = ∅

4: Estimate Rules:
5: Estimate Gx and Gx ,α̂ using Sb

train.
6: Estimate G (λ∗) using Sb

train and Sb
val.

7: Evaluate Rules:
8: Estimate Ŵ b

test(Ĝrand), Ŵ
b
test(Ĝx), Ŵ

b
test(Ĝx ,α̂), and Ŵ b

test(Ĝ (λ∗)).
9: end for
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Estimated Rules and Welfare Back

Rules are defined as: Ĝz := argmaxGz∈Gz{Wn(Gz)}, where:

Wn(Gz) :=
1

475

∑
i∈S

[
YiDi

0.3
· 1(i ∈ Gz) +

Yi (1− Di )

0.7
· 1(i /∈ Gz)

]

and:

▶ Yi is profits 30 days after the intervention.

▶ Di takes value one if i received the grant.
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What if Community Rankings Were More Noisy? Back to Welfare

Are these findings robust to an increase in σ2
ε? Add random noise ζi ∼ N (0, σ2

ζ ) to the
original variable:

α̃i = α̂+ ζi

And apply the same algorithm to compute welfare gains.
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Noise Increase - Welfare Gains Simulations 1 Simulations 2 Back to Graph
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Is λ̂ interpretable?

▶ Signal-to-Noise Ratio/Empirical Bayes:

γSN = γEB =
σ2
α

σ2
α + σ2

ε

▶ EB estimate of α:
α̃EB
i = γEB · α̂i + (1− γEB) · ᾱ

▶ EB policy rule: Thresholds on xi + α̃EB
i to define treatment assignment.
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Simulation Results - λ̂ and λEB Back
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Welfare Gains - Summary Table Back to Graph

How can we summarize welfare gains?

Policy Rule Harm Rate Rand. CB α̂-CB CV-Mixed

Status Quo - +98$ (+2%) +310$ (+7%) +380$ (+8%) +375$ (+8%)
Rand. 0.38 - +212$ (+5%) +282$ (+6%) +277$ (+6%)
CB 0.25 - - +69$ (+1%) +64$ (+1%)
α̂-CB 0.16 - - - −5$ (−0%)
CV-Mixed 0.16 - - - -

Status Quo 4, 582$ - - - -

Notes: Each cell reports the difference in mean welfare between the policy class in the column and the one in the
row. Positive values indicate that the column policy performs better. Harm Rate denotes the probability that the
policy yields lower welfare than the status quo.
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Future Directions (1/2)

Three different policy learning problems:

▶ Find a treatment rule that generalizes well. Today!

▶ Find an optimal subset of a given sample. Work in Progress...
→ New matching estimator to estimate ITEs and find the subgroup that maximizes

Synthetic Welfare.

▶ Treat/not decision on a single unit. Work in Progress...
→ New probabilistic bounds on ITEs.
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Future Directions (2/2) Conclusions

Policy recommendations meet policy learning.

▶ Take most cited papers with an RCT published on a top-5.

▶ Formalize their policy recommendations.

▶ Evaluate their performance.

▶ Compare them with what policy learning would suggest.

41 / 32


	Introduction
	Preview of Results
	Formal Setting
	Potential Outcomes
	Policy Rules
	Welfare

	Theoretical Results
	Assumptions
	Results

	Empirical Application
	Conclusion
	Appendix
	Appendix


